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Series of concentration and velocity patterns are found for the rotating suspension of
non-Brownian settling particles in a completely filled horizontal cylinder. Individual
flow states, or phases, are studied using both side and cross-sectional imaging to
examine the detailed flow structures. The overall steady-state phase diagram of
the system is mapped over a wide range of the rotation rate and fluid viscosity.
Effects of the particle radius a, volume fraction φ, and cylinder radius R on the
transition boundaries are examined. It is found that the phase diagram of the rotating
suspensions can be divided into three regions, in which the transition boundaries
obey different scaling laws. A theoretical attempt is made to understand the scaling
behaviour of the transition boundaries. The theoretical understanding is achieved at
three different levels: a general dimensional consideration, a scaling analysis on the
continuum equations of motion, and a specific instability calculation for the transition
boundary at the centrifugal limit.

1. Introduction
Many industrial processes in chemical, metallurgical, plastics, pharmaceutical, and

food processing involve particulate two-phase flows (Roco 1996; Schaflinger 1996;
Crowe, Sommerfeld & Tsujiet 1998). Because of their fundamental importance and
wide applications, particulate two-phase flows have become an active research area in
recent years. Uniform hard-sphere particles suspended in a Newtonian fluid, in which
thermodynamic forces, Brownian forces, and inertial effects are unimportant, represent
a model system for the study of particulate flows. Although the single-particle motion
is known with high precision, the collective behaviour of the particles often shows
interesting but unexpected features (Roco 1996; Voltz, Pesch & Rehberg 2001). The
fluid in the suspension can generate long ranged hydrodynamic interactions between
the particles, resulting in various interesting concentration and velocity patterns.
Because of the long-ranged hydrodynamic interactions, the particle configuration and
the solution rheology are strongly coupled to the flow field, making the suspension
dynamics an interesting and challenging problem in statistical physics and low-
Reynolds-number hydrodynamics.

Herein we consider a particulate two-phase flow system consisting of a suspension
of uniform non-Brownian settling particles completely filling a horizontal rotating
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cylinder. The system is driven out of equilibrium by two external forces. First, because
the particles chosen are heavy and relatively large (with radius a � 100 µm), they settle
under gravity with a large Stokes velocity U0 = 2�ρga2/(9η), where �ρ = ρp − ρf is
the density difference between the particle and fluid (solvent), g is the gravitational
acceleration, and η is the fluid (solvent) viscosity. As a result, the Péclet number,
given by Pe = aU0/D0, is between 6.5 × 108 and 1.2 × 1010. Here D0 = kBT /(6πηa) is
the Stokes–Einstein diffusion constant for a single particle with thermal energy kBT .
This implies that the Brownian motion of the particles is negligible and the particle
configurations are determined completely by the hydrodynamic interactions between
the particles. Second, the entire system is under a uniform rotation, which gives rise to
a centrifugal force, ρω2r , for the suspension. Here ρ is the suspension density (which
depends on the particle concentration), ω is the rotation rate of the cylinder and r is
the radial position inside the cylinder. Because the cylinder is completely filled, there is
no free surface affecting the dynamics of the system (Boote & Thomas 1999; Thomas
et al. 2001; Tirumkudulu, Tripathi & Acrivos 1999; Tirumkudulu, Mileo & Acrivos
2000; Timberlake & Morris 2002; Duong, Husoi & Shinbrot 2004; Raiskinmaki et al.
2003).

Even for such a seemingly simple system, the dynamics is found to be very rich and
complex. The rotating suspension has many experimental parameters, including the
rotation rate ω, fluid viscosity η, particle radius a, volume fraction φ, density difference
�ρ, cylinder length L and radius R. These parameters give rise to multiple velocity and
time scales for the system. Without a theory, it is difficult to know which dimensionless
parameters control the system. As a result, one has a huge parameter space to explore
experimentally. Several independent experiments have been carried out recently for
different rotating suspensions. The experiments by Seiden et al. (Lipson & Seiden
2002; Seiden, Lipson & Franklin 2004; Seiden, Ungarish & Lipson 2005) studied
the formation of alternating bands of high and low particle concentrations spaced
along the rotation axis of the cylinder. They measured the average band spacing
λ as a function of the ratio L/R. The suspension system used in the experiments
consisted of millimetre-sized particles dispersed in water and other low-viscosity fluids.
A complication caused by using such large particles is that the Reynolds number
based on the particle size and the settling velocity, Re1 = 2aU0ρf /η, becomes very
large. For example, the values of Re1 for the polystyrene and silica spheres used in
these experiments were between 6.5 and 735. In this case, the inertial effect of the
individual particles becomes significant. It is known that the dynamics of inertial
particles is qualitatively different from that of non-inertial particles. This is true even
for the motion of a single particle (Happel & Brenner 1973; Tsao & Koch 1995).

Breu, Kruelle, & Rehberg (2003, 2004) studied the concentration patterns formed
in the rotating suspension of glass beads. In one experiment (Breu et al. 2003), they
investigated how the uniform monolayer of particles coating on the inner wall of
the rotating cylinder under the influence of strong centrifugal force at high rotation
rate develops an instability, when the rotation rate is reduced below a critical value.
Such an instability causes the particle layer to collapse and form radially symmetric
rings on the inner wall of the cylinder. This transition is similar to that between
the discontinuous banding and centrifugal limit phases, to be discussed in § 3.1. The
experiment by Breu et al. was carried out using a suspension of 300 µm diameter
glass beads in water. The particle-based Reynolds number Re1 for this suspension is
still very large (Re1 � 20). In another experiment Breu et al. (2004) found ‘travelling
waves’ in a rotating suspension of 300 µm diameter glass beads in an aqueous solution
of glycerin. Given our results, though in a different region of parameter space, we
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postulate that the onset of the travelling waves reported by Breu et al. is associated
with the transition from the fingering flow I to fingering flow II phases, to be
discussed in § 3.1. Because narrow strip images (512 × 2 pixels) were used for flow
visualization in the experiment by Breu et al., only the axial (horizontal) motion of
a thin horizontal layer of particles was recorded and the three-dimensional structure
of the concentration and velocity fields was not studied.

While the experiments discussed above (Lipson & Seiden 2002; Seiden et al. 2004,
2005; Breu et al. 2003, 2004) revealed several interesting concentration and flow
patterns in the system, they were conducted only in an isolated and rather limited
parameter space. Therefore, these studies have not revealed dimensionless control
parameters for the rotating suspensions. Theoretical arguments and calculations
(Lipson & Seiden 2002; Seiden et al. 2004, 2005; Breu et al. 2003, 2004; Lee & Ladd
2002, 2005) have been used to explain the observed flow patterns, but they made
different assumptions and predictions. A generally accepted theoretical framework for
the rotating suspension is yet to be obtained. To verify the assumptions and test the
theoretical predictions, it is essential to conduct careful and systematic measurements
in a well-characterized suspension and study the overall steady-state phase behaviour
of the system over a wide range of parameter space. Therefore, we choose a suspension
system consisting of uniform glass spheres with radius a = 100 µm in an aqueous
solution of glycerin with two mass concentrations to cover a fluid viscosity range
from 8 to 100 cP. In this range of fluid viscosity, the particle-based Reynolds number
Re1 varies from 9.4 × 10−2 to 7.5 × 10−3 (Matson et al. 2005), suggesting that the
rotating suspensions used in our experiment have a negligible particle inertia effect.
The aims of the experiment are (i) to reveal the overall phase behaviour of the
rotating suspensions and (ii) to study how the concentration and flow patterns as
well as their transition boundaries change with the experimental control parameters
mentioned above.

Recently, we reported the results of an experiment with fixed values of particle
radius a, volume fraction φ, density difference �ρ, cylinder radius R and length L,
but with varying vales of rotation rate ω and fluid viscosity η (Matson, Ackerson &
Tong 2003; Matson et al. 2005). The rotating cylinder used in the experiment was
a Plexiglas tube with a fixed inner radius R = 0.955 cm and full length L =22.75 cm.
The particles used were uniform glass spheres with radius a = 100 µm and density
difference �ρ � 1.19 g cm−3. The volume fraction of the particle suspension was
fixed at φ = 0.023. Hereafter, we refer to this experimental system as the ‘standard
system.’ The standard system showed a series of concentration and velocity patterns,
or phases, over varying values of ω and η. The overall steady-state phase diagram
of the system was carefully studied and the transition boundaries between different
phases were mapped out over a wide range of the rotation rate and fluid viscosity.

In this paper, we report an experimental study of the effects of particle radius
a, cylinder radius R, and volume fraction φ on the pattern formation in rotating
suspensions. In the experiment to be presented below, we choose a new value for a

(= 52 µm) and R (= 1.85 cm), which are different from those in the standard system by
a factor close to two. The value of φ is varied between 1.1 % and 2.6 %. The overall
phase behaviour of the rotating suspensions is carefully examined and the change
of the transition boundaries between different phases is measured as a function of
ω and η for different values of a, R, and φ. While accurate determination of the
phase boundaries is a tedious and lengthy process, such an effort is essential for the
understanding of the overall dynamics of the system and the transition mechanism
between different phases. Knowing the shape of the phase boundaries and their
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Figure 1. (a) Construction of the rotating cylinder and the space coordinates used in the
presentation of the measurements. (b) The experimental setup.

dependence on the relevant experimental parameters will help us to find the scaling
relations among the control parameters and to identify the dominant forces involved
in each of the steady-state phases.

In addition to its fundamental importance, the study of rotating suspensions is also
relevant to a wide range of practical applications. Understanding of the dynamics of
rotating suspensions is required for computer modelling, process control, and various
industrial applications of rotating drum mixers, including the design of rotating
reactors/mixers to minimize the sedimentation effect without using microgravity
(Roberts, Kornfeld & Fowlis 1991; Lipson 2001). In the following we first describe
the main experimental results and provide an overall picture of how the concentration
and velocity patterns formed in the rotating suspensions change with a, R, and φ.
We then present, in the discussion section, dimensional and scaling analyses on the
transition boundaries between different phases and a theoretical calculation for the
transition boundary at the centrifugal limit.

2. Experiment
Figure 1 shows the construction of the rotating cylinder and the experimental setup.

The rotating cylinder is a Plexiglas tube and is mounted horizontally on a thermally
isolated aluminum stand. Details about the apparatus have been described in Matson
et al. (2005), and here we mention only some key points. Two brass ends are milled
to fit the tube and sealed with two o-rings. A sliding plunger is built similarly inside
the tube, so that the length L of the tube to be filled with a solution can be varied.
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A threaded plug is installed at the centre of the plunger to remove air from the tube.
Most measurements are carried out with a full tube length L =22.75 ± 0.05 cm. The
cylinder rotates freely on two ball bearings inside a square cooling chamber, which
has an inch of clearance around the cylinder. The temperature of the cooling chamber
is maintained constant by circulating cold (hot) water from a temperature controlled
bath/circulator. The temperature stability of the circulator is 0.05◦C, which provides
fine control of the fluid viscosity. The cooling chamber is made of flat transparent
Plexiglas plates to admit incident light and to observe the light scattered by the
particles. The use of the flat window eliminates the optical distortions generated by
the curvature of the cylinder sidewall and thus improve the quality of optical imaging.
The base plate of the aluminum stand is equipped with adjustable legs to facilitate
precision levelling of the cylinder and anchor holes to keep the entire system fixed
firmly on an optical table.

Figure 1(a) also shows the space coordinates to be used below in the presentation
of the measurements. The origin of the coordinate system is chosen to coincide with
the centre of the rotating cylinder; r and θ are, respectively, the radial and azimuthal
directions in the rotation plane and the z-axis is along the axis of symmetry (the
rotation axis) of the cylinder. The cylinder is driven by a stepper motor. A thermally
insulated coupler is used to prevent motor heat from entering the cylinder system.
A micro-stepping drive controller regulates the motor position with a resolution of
2.5 × 104 steps/rotation. The controller is stimulated by a home-made indexer, which
provides an accuracy of 2.5 × 10−2 ± 2.5 × 10−5 s in the rotation period T . This fine
control of the rotation period (or the rotation rate ω =2π/T ) allows us to determine
the boundary of each dynamic phase accurately.

The cylinder is filled completely with an aqueous solution of glycerin with a small
amount of liquid detergent (0.25 vol.%) added to prevent particle aggregation. Two
aqueous solutions of glycerin are used to cover a fluid viscosity range from 8 to
100 cP. One aqueous solution has 60 wt. % mass concentration of glycerin and its
viscosity varies from 8 to 22 cP when the temperature of the solution is changed from
30 to 5◦C. The other aqueous solution has 77 wt. % mass concentration of glycerin
and its viscosity varies from 19 to 100 cP when the temperature of the solution is
changed from 44◦C to 6◦C (Matson 2004). In the experiment, we vary the solution
temperature by changing the temperature of the cooling chamber with a temperature
stability of 0.05◦C.

To vary the experimental control parameters, we use three sample systems
in the experiment. The first system uses a rotating cylinder with inner radius
R = 0.955 ± 0.02 cm. The particles used are uniform glass spheres with an average
density ρp = 2.35 g cm−3. The density difference between the particles and the liquid
is �ρ = ρp − ρs � 1.19 g cm−3. The particle radius is a = 100 µm and the size variation
is less than 8 %. The volume fraction of the particle suspension is fixed at φ = 0.023.
We refer to this system as the ‘standard system.’ The second system is the same as the
standard system except that smaller particles are used. The average particle radius is
changed from 100 µm to 52 µm. These particles have somewhat larger size variations
with a standard deviation of approximately 30 %. Hereafter, we refer to this system
as the ‘small-particle system’. The third system is also the same as the standard system
except that the inner radius of the rotating cylinder is increased from 0.955 cm to
1.85 ± 0.02 cm. Hereafter, we refer to this system as the ‘large-cylinder system’.

For the standard system with fluid viscosity rangeing from 8 to 100 cP, the
corresponding Stokes velocity U0 varies from 3.25 to 0.26 mms−1. There are two
length scales and two velocity scales in the problem, which give rise to four definitions
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of the Reynolds number. The Reynolds number based on the particle size and the
settling velocity, Re1 = 2aU0ρf /η, varies from 9.4 × 10−2 to 7.5 × 10−3 in the viscosity
range mentioned above. The Reynolds number based on the particle size and wall
speed is given by Re2 = 2aRωρf /η, which ranges from 3 to 0.2 for a maximum rotation
rate ω � 4π (s−1). The Reynolds number based on the cylinder radius and wall speed,
Re3 = R2ωρf /η, ranges from 1.7 × 102 to 13 for ω � 4π (s−1). The Reynolds number
based on the cylinder radius and the settling velocity is given by Re4 =RU0ρf /η,
which varies from 2.9 × 10−2 to 4.5.

In the experiment, we use a standard video imaging technique to record the motion
and spatial distribution of the particles. A video charge-coupled-device (CCD) camera
records particle images in different cross-sectional planes of the cylinder (r , θ-plane)
and in the vertical (θ ,z)-plane passing through the axis of rotation of the cylinder.
To facilitate the imaging in the (r ,θ)-plane (end view), we construct a special short
cell (L = 2.25 ± 0.03 cm) with the same diameter as the longer cylinder but having
a transparent end window for video imaging. The short cell rotates freely on a ball
bearing inside a square cooling chamber and is connected to a drive motor outside
the cooling chamber. A sheet of laser light of 1 mm in thickness is used to illuminate
a (r ,θ)-plane of the cell. The whole cell is mounted on a translational stage, so that
the flow visualization in the (r ,θ)-plane can be carried out at different locations along
the z-axis. The imaging of the long cylinder in the vertical (θ ,z)-plane (side view) is
carried out using back-lit illumination. Particle trajectories are visible as streaks in
superposed consecutive images. To vary the contrast of the particle images, we use
both blue and translucent white glass spheres.

3. Experimental results
3.1. General phase behaviour of the standard system

The standard system exhibits a total of ten different steady states (or dynamic phases)
and they are distinguished in the experiment by their unique flow patterns and particle
distributions. At low rotation rates, the particles lie and slide on the bottom floor
of the cylinder, forming a fluidized granular bed. At very high rotation rates, the
centrifugal force becomes dominant and all the particles are spun onto the cylinder
wall. Between the two extremes, we observed a series of different concentration and
velocity patterns in the rotating suspension. Figure 2 shows the ‘phase diagram’ of
the standard system as a function of the rotation period 2π/ω and fluid viscosity η.
It is reproduced here to provide a global comparison between the phase diagrams
obtained in different rotating suspensions.

We first briefly review each of the phases in order of their appearance with
increasing ω. A detailed description of the flow states in the standard system can be
found in Matson et al. (2005). This review serves as an introduction to the small-
particle and large-cylinder systems, as both of them exhibit the same number of
steady states. The steady states in these two systems show similar behaviour to those
in the standard system, and they differ only in their locations in the phase diagram. In
this section we discuss the common features of the steady states in all three systems,
and the differences between these systems will be discussed in the following sections.
Figure 3 shows the side view of the particle distribution for different steady states
in the standard system. These images were taken using back lighting. Regions with
higher particle population absorb and scatter more light and thus appear darker.
Similar particle distributions are also observed in the small particle and large cylinder
systems.
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Figure 2. (a) Overall phase diagram of the standard system in the plane of the rotation period
2π/ω and fluid viscosity η. (b) An enlarged part of the phase diagram for high-rotation-rate
states. The symbols are experimentally determined data points and the solid lines are
spline-fitted smooth curves for the phase boundaries. The dashed lines are the extrapolated
curves from the fit. GB: granular bed, F1: fingering flow I, F2: fingering flow II, LT:
low-rotation-rate transition, SB: stable bands, LD: local-structure drop-off, HR: homogenous
region, HT: high-rotation-rate transition, DB: discontinuous banding, and CL: centrifugal
limit.

Granular bed (GB) When ω is zero, the particles lie on the cylinder floor as a loosely
packed granular bed. As the cylinder rotates, the bed is carried up the rising wall.
Under gravity the inner layer of particles in contact with the solvent slide downward,
creating a circulation within the bed. A steady state is reached, which results in a
fluidized granular flow similar in appearance to that observed for a viscous liquid in a
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Figure 3. Side view of the particle distribution for different flow states in the standard
system. Darker regions contain more particles. GB: granular bed, F1: fingering flow I, F2:
fingering flow II, LTb: low-rotation-rate transition without a granular bed, SB: stable bands,
LD: local-structure drop-off, HR: homogenous region, HT: high-rotation-rate transition, DB:
discontinuous banding, and CLb: centrifugal limit with all particles on the cylinder wall.

partially filled rotating cylinder (Thoroddsen & Mahadevan 1997). This gravity-driven
flow produces a counter rotation in the pure liquid in the central region of the cell.
With larger ω, the top leading edge of the bed moves into the upper half of the cell
and the particles are injected into and become suspended in the pure liquid region.

Fingering flow I (F1) Particles in the F1 phase behave differently from those in the
GB phase on a microscopic level. In the GB phase, particles are mostly contained
in the granular bed region. Those particles travelling near the upper part of the bed
move downward together with the bed with the same velocity and they join the bed
downstream in a relatively short period of time. In the F1 phase, however, particles
leave the top, or leading edge of the bed, as a two-dimensional sheet. This is an
unstable situation leading to a Rayleigh–Taylor-like instability (Chandrasekhar 1961;
Youngs 1984) with particles clumping together into lines or fingers. Initially, two or
three particles line up loosely in the flow and then grow into chain-like structures of
several millimetres in length and a few particle diameters in width. We call this ‘finger
formation’ and hence the resulting flow is called ‘Fingering flow’. As ω increases, the
fingers grow both in number and size, and so does their settling velocity relative to
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the rotating background. The fingers are distributed along the z-axis uniformly. When
a finger falls, it follows the granular bed, keeping its radial position r nearly constant
until it reaches the base of the bed.

Fingering flow II (F2) As mentioned above, the fingers become larger with
increasing ω and thus produce larger disturbances to the flow field in the closed
cylinder. The fingers in the F2 phase are large enough to become visible in the side
view image shown in figure 3 (F2). The thin vertical dark strands on the upper half
of the tube are the growing fingers, which are distributed quite uniformly along the
z-axis. These thin dark strands are invisible in figure 3 (F1). Closer examination of
the finger detachment near the top leading edge of the granular bed reveals that the
fingers in the F1 phase detach from the rising wall at fixed locations of approximately
equal distance apart along the cylinder when viewed from the side. In going from
the F1 to F2 phases, we find that the detaching position of the settling fingers
begins to drift over a small horizontal distance. As a result, the falling fingers when
viewed at a fixed downstream location appear to have a zigzag-like trajectory as a
function of time. Careful particle tracking reveals that the fingering flow is essentially
two-dimensional, independent of z in both the F1 and F2 phases.

Low-rotation-rate transition (LT) The onset of the low-rotation-rate transition is
marked by the development of an axial component (vz) of the finger velocity. The
motion of the fingers becomes three-dimensional when the fingers start to fall toward
the centre of rotation at larger rotation rate. Further increasing ω results in the fingers
falling next to the downward-moving cylinder wall. Once this occurs, the granular
bed is quickly dissolved and all the particles remain suspended. The LT phase has a
transition character, which is unique when compared with the other phases discussed
above. Near the lower ω boundary, the system behaves more like F2. As the system
moves toward the larger ω boundary, the fingering flow behaviour diminishes and the
system starts to resemble the stable band phase, to be discussed below. The band-like
appearance is clearly seen in figure 3 (LTb). Particles form periodic bands along the
z-axis with a distinct self-reinforcing flow structure. Before reaching the transition
boundary between the LT and SB phases, however, these bands are unstable and
fluctuate both in time and spatial orientation in a quasi-periodic fashion.

Stable bands (SB) Once the lower ω boundary of the SB phase is reached, the
fluctuating velocity components parallel to the rotation axis disappear, and the bands
become stationary in space. As shown in figure 3 (SB), the bands are structurally
identical and are separated alternately by void regions. The position of the bands
remains fixed for a given ω with fairly uniform spacing, except near the cylinder ends.
The average spacing between the bands is λ= 2.2 cm, which is 1.2 ± 0.1 times the
tube diameter. Our measurements of the band spacing with different values of ω,
η, R, a, and φ reveal that the average band spacing changes only with the cylinder
radius R and is independent of the other control parameters. Lipson et al. (Lipson &
Seiden 2002; Seiden et al. 2004, 2005) also reported band formation for nearly neutral
buoyant particles in water and other low-viscosity fluids. While their experimental
uncertainties are relatively large, the measured band spacing is comparable to our
result. They also found that the average band spacing changes with the cylinder
length L. However, our measurements carried out in the L = 22.75 cm and L = 2.25
cm cylinders show that the steady-state behaviour of the phase diagram for the three
suspension systems remains unchanged with L.

Local-structure drop-off (LD) At even larger ω, the secondary flow pattern
associated with the band structure cannot keep up with the increased cylinder rotation
and the band structure decays. At first, one segment of the bands disappears and that
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region appears uniform at a lower particle concentration. The other band segments
remain unchanged with little or no adjustment in axial location. However, they may
absorb particles to increase the gravitational force required to maintain the remaining
structure. This is shown in figure 3 (LD). Once the drop-off process starts at a
given location, it spreads along the z-axis in both directions with increasing ω. It is
found that the local-structure drop-off is a reversible process. Reducing the rotation
rate reverses the process and restores all the destroyed structures to their original
position.

Homogeneous region (HR) For high-viscosity solutions, the drop-off process
continues with increasing ω until all the bands disappear from the entire cylinder. As
shown in figure 3 (HR), the spatial distribution of the particles in the HR phase is
fairly uniform throughout the cylinder. The HR phase is extremely sensitive to the
levelling of the rotating cylinder and a slight tilt of less than a tenth of a degree will
result in a notable concentration gradient along the tube length. In the experiment,
we were able to keep the cylinder at a perfectly levelled state for several weeks to
demonstrate the steady-state nature of the HR phase. It is seen from figure 2 that the
HR phase occupies a small island region of the phase space, indicating that a delicate
balance among the governing forces is required for this particular flow state.

High-rotation-rate transition (HT) The high-rotation-rate transition is charact-
erized by large-scale concentration variations along the rotation axis (z-axis). As
shown in figure 3 (HT), the particles migrate and form three concentrated (dark)
regions extending along the z-axis. The dark regions are several centimetres in length
and are separated by two less populated (light) regions. Usually we see two or three
concentrated regions along the entire length of the cylinder. There is no obvious
secondary flow associated with this structure, as in the case of the SB and LD phases.
The exact number and the location of the concentrated regions vary with ω and
η but seem to be independent of L. Similar to the situation in the LT phase, the
HT phase also resembles a coexistent state. Near the lower ω boundary, the system
resembles the LD phase with a background concentration variation. As the system
moves toward the larger ω boundary, the concentrated regions shrink and the system
behaves more like the DB phase, to be discussed below.

Discontinuous banding (DB) The DB phase shows sharp and well-separated dense
regions of particles having no regular spacing. Hereafter, we refer to these dense
regions of particles as segregation bands. The region between the segregation bands
is free of particles. Figure 3 (DB) shows the concentration profile of the DB phase
along the z-axis. When viewed from the side, the segregation bands have particles
on or near the cell wall as well as a ball-shaped collection of particles near the axis
of rotation. The ball of particles is diffuse and occupies more than half the space
between the cell walls. At the lower frequency boundary of this phase, particles are
ejected along the axis of rotation and follow an irregular trajectory bringing them
back to the band at the outer wall. This observation suggests some sort of secondary
flow, which is out (away) from the band along the axis of symmetry and toward the
band along the cell walls. The absence of particles between these bands also suggests
some secondary flow that both forms and maintains the band structure. One possible
source of the secondary flow is a streaming flow produced by the motion of particles
within the band structure itself. In the rotating frame with angular velocity ω, the
ball of particles as a whole may oscillate under the alternating gravitational force
ρg of frequency ω. Such an oscillatory motion of particles could generate a steady
streaming flow (Riley 2001; Voth et al. 2002) to maintain the band structure of this
phase.



Measured scaling properties of a rotating suspension 243

Centrifugal limit (CL) The large-ω limit of the phase diagram is the centrifugal
limit, at which all the particles spin out to the cylinder wall under the influence of
the centrifugal force. Given enough time, all patterns present on the cylinder wall are
eliminated and a uniform coating layer of particles is generated on the wall. Figure 3
(CLb) shows the side view of this coating layer. The transition from the DB phase
to the CL phase is one of the sharpest transitions discussed so far: it is sharper than
our resolution in the rotation period, which is 25 ms per rotation, and is completely
reversible. In other words, a change of less than 2.5 % in rotation period (25 ms out
of 1 s at η � 60 cP, see figure 2) will cause all the particles to spin out to the cylinder
wall. Going back to the previous setting will recreate the segregation bands at exactly
the same axial locations.

3.2. Particle size dependence

We first examine the response of the rotating suspension when the particle radius a

is changed to a = 52 µm. The measurements in the standard system (Matson et al.
2005) show that the transition boundaries in figure 2 result from a balance of the
competing forces acting on the rotating suspension over varying values of ω and η.
When the particle size (or cylinder radius) is changed, new balances are established.
Thus a close examination of how the transition boundaries respond to the change
of the key experimental parameters will provide new insight into the nature of the
competing forces responsible for each transition. This will also help us to find the
dimensionless control parameters of the system. Figure 4 shows the phase diagram of
the small-particle system in the plane of the rotation period 2π/ω and fluid viscosity
η. It exhibits the same number of steady states as the standard system. These steady
states share features with the standard system, but the location of the transition
boundaries in the small-particle system moves considerably in the plane of 2π/ω and
η. In particular, the three low-rotation-rate boundaries shift significantly to smaller
values of ω. To facilitate further theoretical analysis, we provide the numerical values
of all the measured transition boundaries in table 2, which is available as a supplement
to the online version of the paper.

It is important to note that the observed transition boundaries HT/DB and DB/CL
are independent of the particle size. This finding suggests that the governing forces
associated with the high-rotation-rate states can be described by a course-grained
approach and a continuum theory may be possible. The HR phase is recovered
in the small-particle system. The rotation rate for the onset of the HR phase is
slightly smaller than that of the standard system, but the viscosity range of the
HR phase remains almost unchanged. This indicates that the small-particle system
requires smaller values of the rotation rate to achieve near homogeneous mixing. As
mentioned above, reducing the particle size by a factor close to 2 (and hence the
particle settling velocity U0 is reduced by a factor of almost 4) generally decreases
the rotation rate necessary for each transition boundary. The transition boundaries
in the low-rotation-rate regime are affected most.

3.3. Cylinder radius dependence

We now discuss how the rotating suspension responds to the change of the cylinder
radius to R =1.85 cm. Figure 5 shows the phase diagram of the large-cylinder system
in the plane of the rotation period 2π/ω and fluid viscosity η. Except for the HR phase,
the large-cylinder system recovers all the steady states in the standard system. These
steady states share features with the standard system, but the location of the transition
boundaries in the large-cylinder system shifts considerably in the plane of 2π/ω and η.
It is found that all the transition boundaries depend on the cylinder radius. Increasing
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Figure 4. (a) Overall phase diagram of the small-particle system in the plane of 2π/ω and
η. (b) An enlarged part of the phase diagram for high-rotation-rate states. The symbols are
experimentally determined data points and the solid lines are spline-fitted smooth curves for
the phase boundaries. The dashed lines are the extrapolated curves from the fit. Letter symbols
are the same as in figure 2.

the cylinder radius by a factor close to 2 generally decreases the rotation rate necessary
for each transition boundary. The HR phase, which is located in the viscosity range of
∼80 cP for the standard system, could not be reproduced in the large-cylinder system.
It may move to a higher viscosity range beyond the reach of the current experiment.
The numerical values of all the transition boundaries in the large cylinder system are
also given in table 2 (available with the online version of the paper).

3.4. Particle concentration dependence

In addition to the study on how the particle size and cylinder radius affect the
steady states of the rotating suspension, we also investigated the effect of the particle
concentration on four high-rotation-rate boundaries: the onset boundaries of the LD
and HT phases (labelled LD-onset and HT-onset, respectively, in table 1) and the
HT/DB and DB/CL boundaries. In the experiment, we choose three fixed values
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Figure 5. (a) Overall phase diagram of the large-cylinder system in the plane of 2π/ω and
η. (b) An enlarged part of the phase diagram for high-rotation-rate states. The symbols are
experimentally determined data points and the solid lines are spline-fitted smooth curves for
the phase boundaries. The dashed lines are the extrapolated curves from the fit. Letter symbols
are the same as in figure 2.

of the fluid viscosity along the transition boundaries in the standard system and
observe how the location of each transition boundary changes with the particle
volume fraction φ. The numerical values of the four transition boundaries measured
at different values of η are given in table 1. Figure 6 shows an example of the
measured concentration dependence for the HT-onset boundary at three fixed values
of η: 71.06 cP (circles), 37.29 cP (triangles), and 20.81 cP (pluses). The four transition
boundaries all follow the same general trend that the rotation rate required for
each transition boundary increases with increasing φ. This finding suggests that the
dominant effect of increasing particle concentration is not an increase of the effective
fluid viscosity, which would lower the rotation rate necessary for each transition
boundary; rather, it is the increase of the gravitational driving force due to the increase
of the total particle mass that causes the increase of ω with φ. The data also reveal a
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LD-onset HT-onset HT/DB DB/CL
η (cP) φ ( %) 2π/ω (s) 2π/ω (s) 2π/ω (s) 2π/ω (s)

71.06 1.06 7.35 6.65 1.34 1.26
1.47 6.35 5.26 1.34 1.19
1.88 5.58 4.88 1.34 1.14
2.29 4.63 3.94 1.34 1.11
2.70 4.78 3.45 1.34 1.11

37.29 1.06 4.10 3.45 1.34 1.04
1.47 3.65 3.08 1.24 0.96
1.88 3.45 2.79 1.21 0.84
2.29 3.05 2.66 1.19 0.81
2.70 2.66 2.41 1.09 0.74

20.81 1.06 3.13 2.93 1.14 0.66
1.47 2.55 2.48 1.11 0.66
1.88 2.68 2.38 1.09 0.74
2.29 2.33 2.13 1.06 0.74
2.70 2.23 1.95 1.04 0.64

Table 1. Numerical values of the measured transition boundaries as a function of φ in the
standard system at three fixed values of fluid viscosity. Some of the transition boundaries are
plotted in figure 6.

1 2 3
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2π
/ω

 (
s)

φ (%)

Figure 6. Measured concentration dependence of the onset boundary of the HT phase in
the standard system at three fixed values of fluid viscosity: η = 71.06 cP (circles), 37.29 cP
(triangles), and 20.81 cP (pluses).

viscosity-dependent character. As shown in figure 6, the high-viscosity portion of the
transition boundary is more sensitive to the concentration changes. We also examined
the transition boundaries of the HR phase in the standard system and found that
they remain unchanged over the concentration range studied.

4. Discussion
The experimental results discussed above provide new insight into the scaling

behaviour of the transition boundaries in the rotating suspensions. The experiment
indicates that the phase diagram of the rotating suspensions can be divided into
three regions. In the low-rotation-rate regime (Regime I), which includes the GB, F1,
F2, and part of LT phases, hydrodynamic interactions resulting from the settling of
individual particles are important. The settling of the particles is balanced by the
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lift of the upward moving wall, giving rise to a strong dependence of the transition
boundaries on both a and R. In the high-rotation-rate regime (Regime III), which
includes the HT, DB, and CL phases, the centrifugal force becomes important. The
balance between the gravitational acceleration g and the centripetal acceleration ω2R

at the cell wall gives rise to a rotation period, which has a square-root dependence
on R but is independent of the particle radius a. The transition boundaries in the
intermediate regime (Regime II), which includes part of LT, SB, LD, and HR phases,
show a more complex behaviour, suggesting a delicate balance among the viscous,
gravitational and centrifugal forces.

4.1. Dimensional analysis of the transition boundaries

With these observations, we now can carry out a general dimensional analysis of the
transition boundaries. The first step in the dimensional analysis is to list all possible
parameters for the system at hand. Here we include: N , the number of particles in
the sample volume R3; φ, the particle volume fraction; ρ, the suspension density; �ρ,
the density difference between the particle and fluid (solvent); ρf , the fluid (solvent)
density; a, the particle radius; R, the cell radius; U0, the particle sedimentation
velocity; g, the acceleration due to gravity; η, the fluid (solvent) viscosity; ω, the
cell rotation rate. There are three relationships connecting some of the 11 parameters
listed above: φ = N(a/R)3, U0 = 2�ρga2/(9η), and ρ = ρf +�ρφ. In addition, there are
three basic units: mass, length and time. Thus we have five independent dimensionless
parameters (11 − 3 − 3 = 5), identified as: a/R, η/(ρf ωR2), g/(ω2R), �ρ/ρf , and φ.
Because �ρ/ρf is not varied in our study, we express our results in terms of the four
dimensionless parameters: a/R, 1/Re3 ≡ η/(ρf ωR2), A ≡ �ρg/(ρf ω2R), and φ. The
volume fraction can also be viewed as a length scale ratio, φ � (4π/3)(a/�)3, where
� is the inter-particle separation. The velocity ratio, U0/(ωR), is not included here
because it is related to A via the equation (a/R)−2[U0/(ωR)]/Re3 = 2A/9.

The transition boundaries based on a hydrodynamic theory of the suspension can
be expressed as a function of the four dimensionless quantities:

F

(
a

R
,

1

Re3

, A, φ

)
= 0. (4.1)

As discussed in § 3.1, the fluid motion in Regime I is more closely related to the
sedimentation of the particles, and thus we replace the variable A by U0/(ωR).
Furthermore, we expect the Reynolds number Re3 to play a less important role in
Regime I. In this case, (4.1) may be rewritten in the form

F1

(
U0

ωR
,

a

R
, φ

)
= 0. (4.2)

Solving for the velocity ratio U0/(ωR), we now have

U0

ωR
= f1

( a

R
, φ

)
� f1

( a

R

)
. (4.3)

In writing the last equality of (4.3), we drop the dependence on φ because it is not
varied in our experiment. The above analysis suggests that the transition boundaries
in Regime I are determined primarily by two dimensionless parameters: U0/(ωR) and
a/R. The transition boundaries plotted in this form for the three suspension systems
determine the unknown function f1 for each boundary.

Figure 7 shows a log-log plot of three different transition boundaries in Regime
I. It is seen from figure 7(a) that the GB/F1 boundaries obtained in three different
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Figure 7. Scaling of the transition boundaries in Regime I. Circles show the standard system,
triangles the small-particle system, and pluses the large-cylinder system. (a) Transition boundary
GB/F1 in the plane of 1/Re3 and A(a/R)3. The solid line is a power-law fit 1/Re3 = 35A(a/R)3.
(b) Transition boundary F1/F2 in the plane of 1/Re3 and A(a/R). The solid line is a power-law
fit 1/Re3 = 5.5×10−3A(a/R). (c) Transition boundary F2/LT in the plane of 1/Re3 and A(a/R).
The solid line is a power-law fit 1/Re3 = 1.3 × 10−2A(a/R).

systems collapse nicely into a single master curve when they are plotted in the plane
of 1/Re3 and A(a/R)3, which are two dimensionless variables for the experimental
variables of η and ω. Curved boundaries in the linear plots shown in figures 2, 4
and 5 become a universal straight line, indicating that the GB/F1 boundary can be
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described by a power law, 1/Re3 = α[A(a/R)3]β , with α = 35 and β = 1.0 (solid line).
This linear equation can be rewritten as: U0/(ωR) = (2/9α)(a/R)−1, which is of the
form shown in (4.3). The F1/F2 boundaries obtained in the three suspension systems
can also be made to coincide once they are plotted in the plane of 1/Re3 and A(a/R).
This is shown in figure 7(b). The F1/F2 boundary can be described by a power law,
1/Re3 =α[A(a/R)]β , with α = 5.5 × 10−3 and β =1.0 (solid line). Again, this linear
equation can be rewritten to the form shown in (4.3): U0/(ωR) = (2/9α)(a/R). It is
seen from figure 7(c) that the F2/LT boundaries measured in the three suspension
systems also have a similar scaling form, 1/Re3 = α[A(a/R)]β , with α = 1.3 × 10−2 and
β = 1.0 (solid line). Except for a larger value of α, this equation is the same as that for
the F1/F2 boundary. It should be noted that in the measurements shown in figure 7,
we have varied the dimensionless parameters A and 1/Re3 over a wide range but the
ratio a/R had just two values: 1.05 × 10−2 and 5.44 × 10−3.

From figure 7 we find that the transition boundaries in Regime I can all be described
by a simple condition: U0/(ωa) = C. The value of the constant C varies for different
boundaries and also depends on a/R for the GB/F1 boundary. Recently, Lee & Ladd
(2005) carried out Stokes-flow simulations for a rotating suspension in a short cylinder
of aspect ratio L/R = 0.4. From these simulations they observed essentially all the
low rotation rate phases discussed above. In addition, they identified a dimensionless
rotation rate, ω∗ = ω�/U0, as an order parameter to distinguish a new dynamic
transition between a low-ω particle-segregated phase and a high-ω particle-dispersed
phase where particles fill the entire volume of the rotating cylinder. Given our results,
we postulate that this transition is located inside the LT phase and is at the borderline
between Regimes I and II. We note that the transition condition for ω∗ =ω�/U0

obtained from the simulations is similar to our scaling result, U0/(ωa) = C, except
that the characteristic length � obtained from the simulations is the inter-particle
separation rather than the particle radius a. The transition boundaries shown in
figure 7 are obtained at a fixed volume fraction and we have not varied the volume
fraction (and hence �) systematically in the experiment.

The transition boundaries in Regime III are independent of the particle size, thus
we expect Re3, A and φ to be the only important dimensionless parameters. In this
case, (4.1) may be rewritten as

F2

(
1

Re3

, A, φ

)
= 0. (4.4)

Solving for 1/Re3, we have

1

Re3

= f2 (A, φ) . (4.5)

This equation suggests that the transition boundaries in Regime III are determined
primarily by two dimensionless parameters: 1/Re3 and A (when φ is not varied) or
a function of A and φ (when φ is varied). The transition boundaries plotted in this
form for the three suspension systems determine the unknown function f2 for each
boundary.

Figure 8 shows a log-log plot of three different transition boundaries in Regime
III. It is seen from figure 8(a) that the DB/CL boundaries obtained in three different
systems collapse nicely into a single master curve when they are plotted in the plane of
1/Re3 and A. Curved boundaries in the linear plots shown in figures 2, 4 and 5 become
a universal straight line, indicating that the DB/CL boundary can be described by a
power law, 1/Re3 � αAβ with α = 1.0 × 10−3 and β = 1.5 (solid line). Similarly, the
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Figure 8. Scaling of the transition boundaries in Regime III. Circles show the standard
system, triangles the small-particle system, and pluses the large-cylinder system. (a) Transition
boundary DB/CL in the plane of 1/Re3 and A = �ρg/(ρf ω2R). The solid line is a power-law

fit 1/Re3 = 1.0 × 10−3A1.5. (b) Upper symbols: transition boundary HT/DB in the plane of
1/Re3 and A. The upper solid line is a power-law fit 1/Re3 = 5.5 × 10−4A1.5. Lower symbols:
transition boundary HT-onset in the plane of 1/Re3 and A. The lower solid line is a power-law
fit 1/Re3 = 6.5 × 10−5A1.5.

HT/DB boundaries (upper symbols in figure 8b) and HT-onset boundaries (lower
symbols in figure 8b) can also be made to coincide when they are plotted in the plane
of 1/Re3 and A. Again, both the HT/DB and HT-onset boundaries can be described
by a power law, 1/Re3 � αAβ (solid lines in figure 8b). The value of the exponent
β (= 1.5) for the two boundaries is found to be the same as that obtained from
figure 8(a). The fitted value of α varies from 5.5 × 10−4 (for the HT/DB boundary)
to 6.5 × 10−5 (for the HT-onset boundary).

Figure 9 shows a log-log plot of the two remaining transition boundaries in Regime
II. The transition boundary for the HR phase is not plotted here because the range
of the experimental variables for this boundary is too small to have a meaningful
log-log plot. Similar to the boundaries shown in figure 8, the LD-onset boundaries
(shown in figure 9a) and LT/SB boundaries (shown in figure 9b) obtained in the
three systems superpose nicely onto a single master curve when they are plotted in
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system, triangles the small-particle system, and pluses the large-cylinder system. (a) Transition
boundary LD-onset in the plane of 1/Re3 and A =�ρg/(ρf ω2R). The solid line is a power-law

fit 1/Re3 = 5.0 × 10−5A1.5. (b) Transition boundary LT/SB in the plane of 1/Re3 and A. The
solid line is a power-law fit 1/Re3 = 3.0 × 10−5A1.5.

the plane of 1/Re3 and A. The two boundaries can be described by a common power
law, 1/Re3 � αAβ (solid lines), with the same exponent β =1.5 as those obtained in
figure 8. The fitted value of α varies from 5.0 × 10−5 (for the LD-onset boundary) to
3.0 × 10−5 (for the LT/SB boundary). We notice that the high-A portion of the data
(A > 150) in figure 9(a) show some deviations from the fitted power law. In a linear
plot, we find that this portion of the data can also be described by a linear function
1/Re3 � α′A (i.e. β = 1.0). In the fitting shown in figure 9(a) we take β =1.5, in line
with the fitting results for the other transition boundaries in Regime II.

Figures 8 and 9 thus demonstrate that the transition boundaries in Regimes II and
III can all be described by a common power law, 1/Re3 � αAβ , with the same exponent
β = 1.5. The amplitude α decreases in order of the appearance of the boundaries with
increasing 2π/ω. An important implication of the power law result, 1/Re3 � αAβ , is
that when the rotation period 2π/ω (and hence A) goes to zero, the corresponding
fluid viscosity η (and hence 1/Re3) also goes to zero or vice versa. From the phase
diagrams shown in figures 2, 4 and 5 we find that all the transition boundaries in
Regimes II and III have a finite intercept on the axis of 2π/ω at the limit η → 0.
By equating the gravitational acceleration g with the centripetal acceleration ω2

0R at
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Figure 10. Scaling of the transition boundaries in the standard system with the volume
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(triangles) and DB/CL (diamonds) boundaries, which are measured at different values of
φ, are plotted in the plane of 1/Re3 and (Aφ1/2)3/2. The solid line shows the function
1/Re3 = 1.69 × 10−2(Aφ1/2)3/2.

the cell wall, we obtain a characteristic rotation period T0 ≡ 2π/ω0 = 2π
√

R/g, which
equals (T0)s =0.196 s for the standard and small-particle systems and (T0)l = 0.272 s
for the large-cylinder system. The value of T0 is independent of η and approximates
the DB/CL boundary at the low-η limit. The characteristic rotation period T0 is the
lower bound for the phase diagrams shown in figures 2, 4 and 5, below which the
centrifugal force becomes so dominant that all the particles are spun onto the cell
wall.

To obtain power-law fits, we define an effective rotation period T ′ ≡ 2π/ω′ = 2π/ω−
2π/ω0, which is used in all the plots shown in figures 8 and 9. A single value of
(T0)s = 0.196 s is used for all the transition boundaries in the standard and small-
particle systems, suggesting that (T0)s can be treated as a common limiting value
as η → 0 for all the boundaries in the standard and small-particle systems. In the
large-cylinder system, we find the expected value of (T0)l = 0.272 s only for the DB/CL
boundary. For the other transition boundaries, a slightly larger value of T0 is needed.
For example, we used T0 = 1.2(T0)l for the HT/DB boundary and T0 = 4(T0)l for all
the other boundaries shown in figures 8 and 9. It is seen from figure 5 that the
transition boundaries between the LT and HT phases in the large-cylinder system
seem to have a larger value of the intercept and more careful measurements at the
small-η limit are need to further confirm this conjecture.

We also explore the possibility of including the volume fraction φ into the scaling.
Figure 10 shows the scaling of the transition boundaries in the standard system
with the volume fraction φ. The onset boundaries of the LD (squares) and HT
(circles) phases and the HT/DB (triangles) and DB/CL (diamonds) boundaries,
which are measured at different values of φ (see table 1), are plotted in the
plane of 1/Re3 and (Aφ1/2)3/2. As demonstrated by figures 8 and 9, these four
boundaries, when measured at a fixed value of φ (= 0.023), can all be described by
a common power law, 1/Re3 = αA3/2, with the value of α varying among the four
boundaries. Once the difference in α is rescaled, the four transition boundaries will
collapse into a master curve, which is represented by the solid line in figure 10 with
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α = 1.0 × 10−3/φ3/4 = 1.69 × 10−2 (1.0 × 10−3 is the slope of the solid line shown in
figure 8a). While each transition boundary shown in figure 10 is measured only in
a narrow range of φ from 1.1 % to 2.6 %, plotting the four boundaries measured
at different values of η together enlarges the dynamic range of the scaling variables.
This allows us to test the scaling with the volume fraction φ more stringently.

The rescaling factors used for different transition boundaries are determined from
the fittings shown figures 8 and 9 and no other adjustable parameter is used in
figure 10. Figure 10 clearly shows that the φ-scaling for the four transition boundaries
in Regimes II and III has a common form, 1/Re3 =α[Aφ1/2]3/2, with α = 1.69 × 10−2

(solid line). In a recent numerical simulation, Lee & Ladd (2005) showed that because
of long-ranged hydrodynamic interactions between the settling particles, the inter-
particle separation � plays an important role in determining the dynamics of the
particle-dispersed steady states (in Regimes II and III). Our finding that the four
transition boundaries in Regimes II and III scale as Aφ1/2 ∼ A(a/�)3/2 suggests that
these steady states have a non-trivial dependence on �. It is also seen from figure 10
that the measured onset boundary of the LD phase (squares) shows some deviations
from the solid line at large values of (Aφ1/2)3/2. Similar deviations are also observed
in figure 9(a).

It should be noted that figures 7–10 are obtained after many trials of plotting the
data in different ways. The log-log plots in figures 7–10 are chosen to show the simple
power laws discussed above. We recognize that these power laws are empirical and
the data could be plotted in different ways, given that the volume fraction φ is varied
only in a narrow range and the ratio a/R has just two values. To accommodate this,
we provide the numerical values of all the measured transition boundaries in table 1
and the online suppliement table 2. In the appendix we show that the scaling results
obtained above based on the dimensional analysis can also be obtained using the
equations of motion for the continuous fluid (suspension) phase.

4.2. Rayleigh–Taylor instability at the centrifugal limit

As discussed in § 3.1, the transition between the CL and DB phases is the sharpest
one observed in the rotating suspension. There is no hysteresis associated with this
transition and the measured DB/CL boundary shows a viscosity dependence but is
independent of the particle size (see figures 2, 4, and 5). When reducing ω toward the
DB/CL boundary, the uniform coating layer of particles develops an instability, which
causes it to collapse and a collection of particles falls under the influence of gravity
to the centre of the cylinder and remains suspended (see figure 3 (CLa) in Matson
et al. (2005)). This is similar to the Rayleigh–Taylor instability (Chandrasekhar 1961;
Youngs 1984), where an absolutely unstable configuration of a dense fluid layer over
a less dense fluid layer evolves via the fastest unstable mode of wavelength ξm. Given
the rotation geometry shown in figure 1, one expects the coating layer of particles
on the cell wall to be stable against gravity when ω2R � g (Sharpe 1984). Therefore,
the characteristic rotation period, T0 = 2π

√
R/g, becomes the lower bound for the

DB/CL boundary, because the fluid viscosity tends to reduce the growth rate of the
unstable modes (Sharpe 1984).

With the fluid viscosity included, the growth rate corresponding to the most unstable
mode of wavelength ξm is given by (Chandrasekhar 1961; Youngs 1984)

σm =

√
πg�

ξm

=
(g�)2/3

2ν1/3
, (4.6)
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where � = (ρ1 − ρ2)/(ρ1 + ρ2) is the effective density difference between the two fluid
layers and ν = (η1 + η2)/(ρ1 + ρ2) is their mean kinematic viscosity. For a monolayer
of particles coating the inner wall of the rotating cylinder, the density is well-defined
by ρ1 � ρf + �ρφ0R/(4a), where φ0R/(4a) � 0.055 is the effective volume fraction
for the monolayer. The viscosity of this quasi-two-dimensional system, however, is
not well-defined (Saffman 1976). Given the fact that the effective volume fraction
of particles in the monolayer is not very large, we take η1 � η2 = η for simplicity.
Therefore, we have � � �ρφ0R/(8aρf ) � 0.028 and ν � η/ρf .

Suppose the instability requires a certain amplitude of growth in one rotation period
T (faster rotations would not allow enough time for the instability to develop), then
we have T = K/σm, where K is a proportionality constant of the order of unity. The
horizontal rotation of the cylinder introduces an effective acceleration, g − ω2R, to
the top portion of the particle coating layer, which then becomes the most unstable
region on the cell wall. Substituting this effective acceleration into (4.6), we have

T [1 − (T0/T )2]2/3 = T1, (4.7)

where T1 = 2Kν1/3/(�g)2/3. Note that T = T0 is the solution of T when the fluid
viscosity is zero, at which T1 = 0. Finally, substituting T � T0 + δ into (4.7) and
solving for δ, we obtain

T − T0 � T
3/2
1 T

−1/2
0

2 + (3/2)(T1/T0)3/2
� K3/2ν1/2

π1/2R1/4�g3/4
. (4.8)

In obtaining the last equality of (4.8), we only kept the leading-order term.
Equation (4.8) clearly shows how the two time sales T0 and T1 act together to

determine the DB/CL boundary. To the leading order, the calculated T − T0 scales
with all the dimensional variables as ν1/2/(R1/4g3/4), which is in excellent agreement
with the scaling result, 1/Re3 � 1.0 × 10−3A1.5, shown in figure 8. Using the obtained
power law amplitude, we find the proportionality constant K � 4.5, which is of
the order of unity as expected. Equation (4.8) demonstrates that the modified
Rayleigh–Taylor instability, for a horizontal rotating cylinder, captures the essential
physics of the transition boundary between the DB and CL phases. The calculation
explains both the power-law exponent and amplitude obtained from the experiment.
It also provides a physical reason why an effective rotation period T ′ ≡ T − T0

is needed for the scaling plots shown in figures 8 and 9. The simple continuum
calculation, however, does not include the effect of the particle volume fraction,
which presumably can be obtained only through the coupled equations for the particle
phase.

5. Summary
Series of concentration and velocity patterns are found for a rotating suspension of

non-Brownian settling particles in a completely filled horizontal cylinder. Individual
flow states, or phases, are studied using both side and cross-sectional imaging to
examine the detailed flow structures. The overall steady-state phase diagram of the
rotating suspension is carefully studied and the transition boundaries between different
phases are mapped out over a wide range of the rotation rate and fluid (solvent)
viscosity. In the experiment, two different values of the particle radius a and the
cylinder radius R are used, and the particle volume fraction φ varied is from 1.1 %
to 2.6 %. Effects of a, R and φ on the pattern-forming dynamics of the system are
examined carefully. It is found that the rotating suspensions with different values of a,
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R and φ exhibit the same number of steady states. These steady states are robust and
share common features among the three suspension systems studied. The location of
the transition boundaries for the three systems, however, varies considerably in the
plane of the rotation period 2π/ω and fluid viscosity η.

The measured effects of a, R and φ provide new insight into the nature of the
transition boundaries in the rotating suspension. The experiment clearly indicates that
the phase diagram of the rotating suspension can be divided into three regions. In the
low-rotation-rate regime (Regime I), which includes the granular bed, fingering flow
I, fingering flow II, and part of the low-rotation-rate transition phases, hydrodynamic
interactions resulting from the settling of individual particles are important. The
settling of the particles is balanced by the lift of the upward moving wall, giving rise
to a strong dependence of the transition boundaries on a, R and η. It is found that the
transition boundaries in Regime I can all be described by a simple scaling relation:
U0/(ωa) = C, where U0 is the settling velocity of the particles, and the constant C

varies for different transition boundaries and may also depend on the length ratio
a/R.

In the high-rotation-rate regime (Regime III), which includes the high-rotation-
rate transition, discontinuous banding, and centrifugal limit phases, the centrifugal
force becomes important. The balance between the gravitational acceleration g and
the centripetal acceleration ω2R at the cell wall gives rise to a rotation period,
T0 ≡ 2π/ω0 = 2π

√
R/g, which has a square-root dependence on R but is independent

of the particle radius a. The transition boundaries in the intermediate regime (Regime
II), which includes part of low-rotation-rate transition, stable bands, local-structure
drop-off, and homogeneous region phases, seem to require a more delicate balance
among the viscous, gravitational and centrifugal forces. It is found that the transition
boundaries in Regimes II and III can all be described by a common power law,
1/Re3 =α(Aφ1/2)β , where 1/Re3 = η/(ρf ωR2) is the ratio of the viscous force to the
centrifugal force and A= �ρg/(ρf ω2R) is the ratio of the buoyancy force to the
centrifugal force. Curved boundaries in the linear plot become straight lines when
they are plotted on log-log scales for the two scaling variables. The fitted power-law
exponent is found to have the same value β =1.5 for all the boundaries and the
amplitude α decreases in order of the appearance of the boundaries with increasing
2π/ω.

In addition to the experimental investigation, a theoretical attempt is made to
understand the scaling behaviour of the transition boundaries observed in the rotating
suspension. A dimensional analysis is carried out for the rotating suspension. It is
found that the dynamics in Regimes II and III are determined by three dimensionless
parameters: A, 1/Re3, and the density ratio �ρ/ρf . Because �ρ/ρf is not varied
in the experiment, the scaling of the transition boundaries is observed only in the
plane of 1/Re3 and A. In addition to the general scaling analysis, we also carry
out a specific instability calculation for the transition boundary at the centrifugal
limit. This calculation is based on a simple model for the modified Rayleigh–Taylor
instability under the influence of a horizontal rotation. The calculated transition
boundary as a function of η and R fits the measurements well. The calculation
therefore quantitatively explains the power-law behaviour of the measured transition
boundary at the centrifugal limit. It also provides a physical reason why an effective
rotation period is needed for the scaling plot of the transition boundaries.
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Appendix: Scaling analysis of the continuum equations of motion
To further understand the physical meaning of the observed scaling laws shown

in figures 7–10, we carry out a scaling analysis on the equations of motion for the
continuous fluid (suspension) phase, which are closely related to the motion of the
rotating suspension in Regimes II and III. Our analysis is based on the two-fluid model
(Nott & Brady 1994; Ungarish 1993) for suspensions. The macroscopic equations of
motion for the rotating suspension are taken to be the conservation equations of mass
and momentum. In the rotating frame with angular velocity ω, at which the entire
rotating cylinder is at rest, the equations of motion for the suspension with variable
density ρ(r, t), pressure P (r, t), and velocity U(r, t) take the following form (Seiden
et al. 2004; Tritton 1988)

∂tρ + ∇ · (ρU) = 0, (A 1)

ρ∂t U + ρU · ∇U = −∇P + η∇2U + ρg − ω × (ω × ρr) − 2(ω × ρU), (A 2)

where g is the gravitational acceleration. The last two terms on the right-hand side
of (A 2) are, respectively, the centrifugal and Coriolis forces. The density of the
suspension is related to the volume fraction of the particles via ρ = ρf + �ρφ, which
may be solved using two additional equations similar to (A 1) and (A 2) for the
particle phase (Nott & Brady 1994; Ungarish 1993).

To further simplify the equations, one needs to compare the relative weight of each
of the force terms as well as the nonlinear terms in (A 2). Because there are five such
terms in (A 2), there are 10 ratios (dimensionless numbers) between different terms to
compare. Some are standard dimensionless numbers, such as Grashof (or Rayleigh)
number, Prandtl number, Rossby number, and Ekman number, which appear in the
convection and rotation problems separately (Tritton 1988). The other ratios are
special ones, which appear only in this combined rotation and buoyancy-driven flow.
There is no consensus in the literature about which forces dominate in each of the
phases. Various theoretical models have been proposed with emphasis on different
forcing terms and no serious attempt is made to compare the relative weight among
the relevant forces involved in the problem. Part of the difficulty comes from the
fact that the relative weight of the forcing terms changes with the rotation rate and
so does the phase behaviour of the system. The measured phase diagrams shown in
figures 2, 4, and 5 provide accurate numerical values, allowing us to give a concrete
estimate of the relative weight among the relevant forces involved.

The velocity U in (A 2) is the relative velocity with respect to the uniform rotation.
By observing the motion of the particles over a period of time, we find that the
rotation rate of the suspension in Regime II is approximately the same as that of the
cylinder. However, because of variations of the particle concentration, the rotation
centre of the particle trajectories is shifted by an amount of �R relative to the rotation
axis of the cylinder. Figure 11 shows a cross-sectional view of particle trajectories in
the SB phase. It is seen that the particle trajectories in the (r , θ)-plane is exclusively
clockwise but the ‘centre’ of the particle trajectories does not coincide with the axis of
rotation. The relative velocity U in this case is just the secondary flow associated with
the bands and scales as U � ω�R. For a single (heavy) particle in a uniform rotating
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Figure 11. Cross-sectional view of particle trajectories in the SB phase, taken in the less
populated band region with the smallest particle concentration. For clarity, 30 sequential
images taken at time intervals of 1/10 s are superimposed. The arrows indicate the direction of
the cylinder rotation. There are a few small defect spots on the optical window, which appear
as stationary bright spots in the picture when the intensity of the illuminating light sheet is
low. A solid-state laser of wavelength 532 nm is used to generate the illuminating light sheet.

fluid, this relation holds exactly (Seiden et al. 2005; Roberts et al. 1991). The ratio
of this relative velocity to the linear velocity of the cell wall is thus U/(ωR) � �R/R.
From figure 11 we find that a typical value of �R/R is �R/R � 0.16. In fact, this is
probably the largest value of �R/R in Regime II. As the system moves toward the
large-ω end of Regime II (i.e. in the LD phase), the secondary flow associated with
the stable bands cannot keep up with the increased cylinder rotation and the band
structure decays, with �R being reduced gradually toward zero.

In Regime III, the centrifugal force becomes more important. This is shown by the
creation of a concentration gradient in the radial direction. Unlike the structures in
Regime II, which show large concentration variations only along the cylinder length
(the z-axis) but not in the (r , θ)-plane (see figure 11), the structures in Regime III are
azimuthally symmetric (no apparent θ dependence) but show significant variations of
the particle concentration in the radial direction (r-dependence). This concentration
gradient can produce an additional pressure gradient (Nott & Brady 1994), balancing
the centrifugal force in the positive radial direction. The relative velocity U in
Regime III is found to be small compared with that in Regime II. The concentration
patterns in Regime III appear to rotate almost rigidly with the cylinder.

With these observations, we can now estimate the relative weight of various terms in
(A 2). We first carry out our analysis in Regime II. From figure 2 we choose a typical
point in the SB phase with ω � 2 s−1 and ν � η/ρf � 0.35 cm2 s−1. The centrifugal
force ω × (ω × ρr) scales as ρω2R. The Reynolds number Rer , which is a ratio of the
nonlinear terms to the viscous force, is given by Rer = ρU · ∇U/(η∇2U) � UR/ν � 0.8.
The Rossby number Ro, which is a ratio of the nonlinear terms to the Coriolis force,
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is given by Ro = ρU · ∇U/(2ω × ρU) � U/(2ωR) � 0.08. Therefore, the nonlinear
terms in (A 2) can be ignored. The ratio of the Coriolis force to the gravitational
force is given by 2(ω × ρU)/(ρg) � (2�R/R)(ω2R/g) � 1.2 × 10−3, suggesting that
the Coriolis force is less important than the gravitational force. Finally, we compare
the centrifugal force with the gravitational force. The ratio of the centrifugal force to
the gravitational force is given by (ω × (ω × ρr)/(ρg) � ω2R/g � 3.9 × 10−3,
suggesting that in Regime II the centrifugal force is less important than the
gravitational force. In Regime III, however, the centrifugal force needs to be included.
The nonlinear terms and the Coriolis force remain small in Regime III, because they
are associated with a smaller value of U .

With the above numerical estimations, (A 1) and (A 2) can be simplified into the
following form in Regimes II and III:

∂tρ + ∇ · (ρU) = 0, (A 3)

ρ∂t U � −∇P + η∇2U + δρg + ω × (ω × δρr), (A 4)

where δρ = ρ − ρf and the two constant force terms, ρf g and ω × (ω × ρf r), have
been absorbed into the pressure gradient term (Tritton 1988). By non-dimensionalizing
(A 3) and (A 4) with respect to the length R, the velocity Rω, the liquid density ρf ,
and the density difference �ρ, we have

ρ∂t U − A[δρ ŷ − ∇P ] − 1

Re3

∇2U − �ρ

ρf

ω × (ω × δρr) � 0, (A 5)

∂tρ + ∇ · (ρU) = 0, (A 6)

where ŷ is a unit vector pointing to the direction of g. In the above, all the flow
variables (ρ, δρ, U , ω, P ) and the coordinates (r, t) are dimensionless, and the pressure
P is scaled by �ρgR. The time-derivative terms are kept because the motion of the
suspension in the rotating frame is under the influence of an alternating gravitational
force ρg of frequency ω.

Equation (A 5) states that the dynamics of the rotating suspension in Regimes II
and III is determined primarily by three forces: viscous, buoyancy and centrifugal.
Consequently, the two equations of motion are non-dimensionalized by three control
parameters: �ρ/ρf , A, and 1/Re3. As mentioned above, because the density ratio
�ρ/ρf is not varied in the experiment, there are only two dimensionless parameters,
A and Re3, in our study. This conclusion is fully supported by the experimental
results shown in figures 8 and 9. By comparing (A 4) and (A 5), one finds that 1/Re3

is actually the ratio of the viscous force to the centrifugal force, even though it has
the same expression as the Ekman number, which indicates the ratio of the viscous
force to Coriolis force. The parameter A represents the ratio of the buoyancy force
to the centrifugal force.

From the measured phase diagrams shown in figures 2, 4, and 5, we find that
while the overall viscosity dependence of the transition boundaries becomes weaker
as 1/Re3 decreases, considerable viscosity dependence still remains in the DB/CL
boundary, which has the smallest value of 1/Re3 among all the transition boundaries.
The phase boundary measurements thus suggest that the viscous term (1/Re3)∇2U
in (A 5) cannot be ignored for our system even at the small-1/Re3 limit. This is
because the effect of the boundary layer close to the cylinder wall is important for
our system of finite cylinder radius. While the theoretical discussion presented here
proves instructive, it is nevertheless incomplete. As mentioned above, there are two
additional equations of motion for the particle phase, including the conservation
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equation of particles which is not discussed here. A further theoretical analysis is
needed in order to understand the effect of the volume fraction φ on the pattern
formation in the rotating suspensions.
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